Info

Pediatric Emergency Playbook

You make tough calls when caring for acutely ill and injured children. Join us for strategy and support, through clinical cases, research and reviews, and best-practice guidance in our ever-changing acute-care landscape. This is your Pediatric Emergency Playbook.
RSS Feed Subscribe in iTunes
Pediatric Emergency Playbook
2017
May
April
March
February
January


2016
December
November
October
September
August
July
June
May
April
March
February
January


2015
December
November
October
September


Categories

All Episodes
Archives
Categories
Now displaying: Page 1
Dec 1, 2016

"By the pricking of my thumbs,

Something wheezing this way comes."

-- Witches in Macbeth, with apologies to William Shakespeare

 

"Bronchiolitis is like a pneumonia you can’t treat.

We support, while the patient heals."

-- Coach, still apologetic to the Bard

 

 

The Who

The U.S. definition is for children less than two years of age, while the European committee includes infants less than one year of age.

This is important: toddlerhood brings with it other conditions that mimic bronchiolitis – the first-time wheeze in a toddler may be his reactive airway response to a viral illness and not necessarily bronchiolitis.

The What

The classic clinical presentation of bronchiolitis starts just like any other upper respiratory tract infection: with nasal discharge and cough, for the first 1-2 days. Only about 1/3 of infants will have a low-grade fever, usually less than 39°C. We may see the child in the ED at this point and not appreciate any respiratory distress – this is why precautionary advice is so important in general.

Then, lower respiratory symptoms come: increased work of breathing, persistent cough, tachypnea, retractions, belly breathing, grunting, and nasal flaring. Once lower respiratory symptoms are present, like increased work of breathing, they typically peak at day 3. This may help to make decisions or counsel parents depending on when the child presents and how symptomatic he is.

You’ll hear fine crackles and wheeze. A typical finding in bronchiolitis is a minute-to-minute variation in clinical findings – one moment the child could look like he’s drowning in his secretions, and the next minute almost recovered. This has to do with the dynamic nature of the secretion, plugging, obstruction, coughing, dislodgement, and re-plugging.

The Why

Respiratory syncytial virus is the culprit in up to 90% of cases of bronchiolitis. The reason RSV is so nasty is the immune response to the virus: it binds to epithelial cells, replicates, and the submucosa becomes edematous and hypersecretes mucus. RSV causes the host epithelia and lymphocytes to go into a frenzy – viral fusion proteins turn the membranes into a sticky goop – cells fuse into other cells, and you have a pile-on of multinucleated dysfunction. This mucosal chaos causes epithelial necrosis, destruction of cilia, mucus plugs, bronchiolar obstruction, air trapping, and lobar collapse.

High-Risk Groups

Watch out especially for young infants, so those less than 3 months of age. Apnea may be the presenting symptom of RSV.
Premature infants, especially those less than 32 weeks’ gestation are at high risk for deterioration.  The critical time is 48 weeks post-conceptional age.

Other populations at high-risk for deterioration: congenital heart disease, pulmonary disease, neuromuscular disorders, metabolic disorders.

Guiding Principles

In the full term child, greater than one month, and otherwise healthy (no cardiac, pulmonary, neuromuscular, or metabolic disease), we can look to three simple criteria for home discharge.

If the otherwise healthy child one month and older is:

Euvolemic

Not hypoxic

Well appearing

He can likely go home.

The How

Below is a list of modalities, treatments, and the evidence and/or recommendations for or against:

Chest Radiograph

Usually not necessary, unless the diagnosis is uncertain, or if the child is critically ill.

Factors that are predictive of a definite infiltrate are: significant hypoxia (< 92%), grunting, focal crackles, or high fever (> 39°C).

Ultrasound

Not ready for prime time.  Two small studies, one by Caiulo et al in the European J or Pediatrics and one by Basile et al. in the BMC Pediatrics that show some preliminary data, but not enough to change practice yet.

Viral Testing

Qualitative PCR gives you a yes or no question – one that you’ve already answered. It is not recommended for routine use. PCR may be positive post-infection for several weeks later (details in audio).

Quantitative PCR measures viral load; an increased quantitative viral load is associated with increased length of stay, use of respiratory support, need for intensive care, and recurrent wheezing. However, also not recommended for routine use.

There is one instance in which viral testing in bronchiolitis can be helpful – in babies less than a month of life, the presence of RSV virus is associated with apnea.

Blood or Urine Testing

Routine testing of blood or urine is not recommended for children with bronchiolitis.  Levine et al in Pediatrics found an extremely low risk of serious bacterial illness in young febrile infants with RSV.

The main thing is not to give in to anchoring bias here. If an infant of 3 months of age or older has a clear source for his low-grade fever – and that is his bronchiolitis – then you have a source, and very rarely do you need to go looking any further. He’s showing you the viral waterfall from his nose, and his increased work of breathing. It’s not going to be in his urine.

Bronchodilators!

Should we use bronchodilators in bronchiolitis?  It seems lately that this is a loaded question – with strong feelings on either side amongst colleagues. The short answer is that the American Academy of Pediatrics, the UK’s National Institute for Health and Care Excellence, as well as the Canadian Pediatric Society currently recommend against them. However, in continental Europe and Australia, the language is softened to “not routinely recommended”.

Pros and Cons in Audio; the 2006 AAP Guidelines and the 2014 AAP Guidelines use same data to come to divergent recommendations.

Steroids

There is no role for steroids in the treatment of bronchiolitis, even in those with a family or personal history of atopy.

Nebulized Hypertonic Saline

May show some benefit in admitted patients, after repeated treatments; no data to support its use in ED patients (no immediate effect).

Nebulized Epinephrine

One randomized controlled double blinded study in eight centers in Norway published in the NEJM showed no benefit to nebulized epinephrine over nebulized saline. Again, probably asking too much of one single intervention.

The Cochrane review found 19 studies that included a total of 2256 children with acute bronchiolitis treated with nebulized epinephrine. There were no differences in length of hospital stay between the placebo and treatment groups, and so they concluded that for inpatients, nebulized epinephrine is not worth the hassle. However – and this may just be an artifact of meta-analysis – there may be some benefit to outpatients. One study of combined high-dose steroid and epinephrine therapy was not statistically significant when other factors were controlled, but Cochrane concluded that nebulized epinephrine itself may be helpful for outpatients. It won’t affect the overall disease time course, but it may make them feel better enough to go home from the ED and continue observation there.

High-Flow Nasal Cannula Oxygen

High-flow oxygen via nasal cannula requires specialized equipment and delivers humidified oxygen at 1-2 L/g/min.  In addition to oxygenation, high flow nasal cannula also likely offers some low-grade positive end-expiratory pressure, which may help with alveolar recruitment. The evidence for its use is based on observational studies, which have found improved respiratory parameters and reduced rates of intubation.  Nasal CPAP also has some promising properties in the right clinical setting.

Antibiotics

Not recommended. When bronchiolitis is from a clear viral source, the risk of accompanying bacteremia is less than 1%. A meta-analysis of randomized clinical trials found that antibiotics in bronchiolitis did not improve duration of symptoms, length of hospital stay, need for oxygen therapy, or hospital admission.

Summary: The Good, the Bad, and the Ugly

The Good

Nasal suction and hydration are your best allies. You may elect to give a bronchodilator as a trial once and reexamine, if you’re a bronchodilating believer.

The Bad

Steroids, antibiotics, and a blind obeying of the guidelines. Weigh the risks and benefits of every intervention, including hospitalization – it’s not always a benign thing.

The Ugly

Take a moment to assess the child and make a clinical diagnosis of bronchiolitis, after you’ve excluded cardiac disease, anatomic anomalies, and foreign body aspiration. Wheezing without upper respiratory symptoms is not viral, and it is not bronchiolitis.

When all else fails, remember: in the otherwise healthy, term infant greater than a month of age, if he is well appearing, euvolemic, and not hypoxic, he will often do well with good precautionary advice and supportive care at home. Every thing else: be skeptical, be thorough, and above all, be careful.

References
Alansari K, Toaimah FH, Khalafalla H, El Tatawy LA, Davidson BL, Ahmed W. Caffeine for the Treatment of Apnea in Bronchiolitis: A Randomized Trial. J Pediatr. 2016 May 14. pii: S0022-3476(16)30170-6. [Epub ahead of print]

American Academy of Pediatrics Subcommittee on Diagnosis and Management of Bronchiolitis. Diagnosis and management of bronchiolitis. Pediatrics. 2006 Oct;118(4):1774-93.

Beggs S, Wong ZH, Kaul S, Ogden KJ, Walters JA. High-flow nasal cannula therapy for infants with bronchiolitis. Cochrane Database Syst Rev. 2014 Jan 20;(1):CD009609.

Bergroth E, Aakula M, Korppi M, Remes S, Kivistö JE, Piedra PA, Camargo CA Jr, Jartti T. Post-bronchiolitis Use of Asthma Medication: A Prospective 1-year Follow-up Study. Pediatr Infect Dis J. 2016 Apr;35(4):363-8.

Cunningham S, Rodriguez A, Adams T, Boyd KA, Butcher I, Enderby B, MacLean M, McCormick J, Paton JY, Wee F, Thomas H, Riding K, Turner SW, Williams C, McIntosh E, Lewis SC; Bronchiolitis of Infancy Discharge Study (BIDS) group. Oxygen saturation targets in infants with bronchiolitis (BIDS): a double-blind, randomised, equivalence trial. Lancet. 2015 Sep 12;386(9998):1041-8.

Flett KB, Breslin K, Braun PA, Hambidge SJ. Outpatient course and complications associated with home oxygen therapy for mild bronchiolitis. Pediatrics. 2014 May;133(5):769-75.

Florin TA, Plint AC, Zorc JJ. Viral bronchiolitis. Lancet. 2016 Aug 20. [Epub ahead of print]

Halstead S, Roosevelt G, Deakyne S, Bajaj L. Discharged on supplemental oxygen from an emergency department in patients with bronchiolitis. Pediatrics. 2012 Mar;129(3):e605-10.

Johnson LW, Robles J, Hudgins A, Osburn S, Martin D, Thompson A. Management of bronchiolitis in the emergency department: impact of evidence-based guidelines? Pediatrics. 2013 Mar;131 Suppl 1:S103-9.

Lashkeri T, Howell JM, Place R. Capnometry as a predictor of admission in bronchiolitis. Pediatr Emerg Care. 2012 Sep;28(9):895-7.

Lehners N, Tabatabai J, Prifert C, Wedde M, Puthenparambil J, Weissbrich B, Biere B, Schweiger B, Egerer G, Schnitzler P. Long-Term Shedding of Influenza Virus, Parainfluenza Virus, Respiratory Syncytial Virus and Nosocomial Epidemiology in Patients with Hematological Disorders. PLoS One. 2016 Feb 11;11(2):e0148258.

Liet JM, Ducruet T, Gupta V, Cambonie G. Heliox inhalation therapy for bronchiolitis in infants. Cochrane Database Syst Rev. 2015 Sep 18;(9):CD006915.

Mammas IN, Spandidos DA. Paediatric Virology in the Hippocratic Corpus. Exp Ther Med. 2016 Aug;12(2):541-549.

Mansbach JM, Clark S, Teach SJ, Gern JE, Piedra PA, Sullivan AF, Espinola JA, Camargo CA Jr. Children Hospitalized with Rhinovirus Bronchiolitis Have Asthma-Like Characteristics. J Pediatr. 2016 May;172:202-204.e1.

Meissner HC. Viral Bronchiolitis in Children. N Engl J Med. 2016 Jan 7;374(1):62-72.

Munywoki PK, Koech DC, Agoti CN, Kibirige N, Kipkoech J, Cane PA, Medley GF, Nokes DJ. Influence of age, severity of infection, and co-infection on the duration of respiratory syncytial virus (RSV) shedding. Epidemiol Infect. 2015 Mar;143(4):804-12.

Oakley E, Borland M, Neutze J, Acworth J, Krieser D, Dalziel S, Davidson A, Donath S, Jachno K, South M, Theophilos T, Babl FE; Paediatric Research in Emergency Departments International Collaborative (PREDICT). Nasogastric hydration versus intravenous hydration for infants with bronchiolitis: a randomised trial. Lancet Respir Med. 2013 Apr;1(2):113-20. Epub 2012 Dec 21.

Oakley E et al. Nasogastric Hydration in Infants with Bronchiolitis Less Than 2 Months of Age. J Pediatr. 2016. [Article in Press]

Principi T, Coates AL, Parkin PC, Stephens D, DaSilva Z, Schuh S. Effect of Oxygen Desaturations on Subsequent Medical Visits in Infants Discharged From the Emergency Department With Bronchiolitis. JAMA Pediatr. 2016 Jun 1;170(6):602-8.

Ralston SL, Lieberthal AS, Meissner HC, Alverson BK, Baley JE, Gadomski AM, Johnson DW, Light MJ, Maraqa NF, Mendonca EA, Phelan KJ, Zorc JJ, Stanko-Lopp D, Brown MA, Nathanson I, Rosenblum E, Sayles S 3rd, Hernandez-Cancio S; American Academy of Pediatrics. Clinical practice guideline: the diagnosis, management, and prevention of bronchiolitis. Pediatrics. 2014 Nov;134(5):e1474-502.

Roqué i Figuls M, Giné-Garriga M, Granados Rugeles C, Perrotta C, Vilaró J. Chest physiotherapy for acute bronchiolitis in paediatric patients between 0 and 24 months old. Cochrane Database Syst Rev. 2016 Feb 1;2:CD004873.

Skjerven HO et al. Racemic adrenaline and inhalation strategies in acute bronchiolitis. N Engl J Med. 2013 Jun 13;368(24):2286-93.

This post and podcast are dedicated to Linda Girgis MD, FAAFP, for her authenticity, innovation, and clear and honest voice on the the frontlines.  Thank you, Dr Linda.


150px-WikEM_app_Logo

Bronchiolitis

Powered by #FOAMed -- Tim Horeczko, MD, MSCR, FACEP, FAAP

0 Comments