Info

Pediatric Emergency Playbook

You make tough calls when caring for acutely ill and injured children. Join us for strategy and support, through clinical cases, research and reviews, and best-practice guidance in our ever-changing acute-care landscape. This is your Pediatric Emergency Playbook.
RSS Feed Subscribe in Apple Podcasts
Pediatric Emergency Playbook
2019
May
April
March
February
January


2018
December
November
October
September
August
July
June
May
April
March
February
January


2017
December
November
October
September
August
July
June
May
April
March
February
January


2016
December
November
October
September
August
July
June
May
April
March
February
January


2015
December
November
October
September


Categories

All Episodes
Archives
Categories
Now displaying: Category: general
Apr 1, 2019

PEMplaybook.org

Oct 1, 2018

PEMplaybook.org

Sep 1, 2018

PEMplaybook.org

Aug 1, 2018

Does Your Patient Have Streptococcal Pharyngitis?

No Problem -- I'll just Swab.

Not So Fast...

 

Fagan Nomogram for Likelihood Ratios

1. Decide on your pre-test probability of the disease (choose an approximate probability based on our assessment)
2. Use the likelihood ratio that correlates to your exam.
3. Draw a straight line frm your pre-test probability starting point, to the LR of the feauture/test, take it through to find your post-test probability
4. Use this new post-test probability to help in your decision


Your patient has palatal petechiae, which confers a positive likelihood ratio (LR+) of 2.7
See below how to use this statistic based on your clinical assessment"

Low Probability

Moderate Probability

High Probability

 

List of Likelihood Ratios for Streptococcal Pharyngitis

Symptoms and signs

Positive LR (95% CI)

Negative LR (95% CI)

Sensitivity (95% CI)

Specificity (95% CI)

Scarlatiniform rash

3.91 (2.00-7.62)

0.94 (0.90-0.97)

0.08 (0.05-0.14)

0.98 (0.95-0.99)

Palatal petechiae

2.69 (1.92-3.77)

0.90 (0.86-0.94)

0.15 (0.10-0.21)

0.95 (0.91-0.97)

Chills

2.16 (0.94-4.96)

0.88 (0.79-0.98)

0.21 (0.18-0.24)

0.90 (0.83-0.97)

Anorexia

1.98 (0.83-4.75)

0.53 (0.26-1.10)

0.62 (0.12-1.11)

0.62 (0.12-1.12)

Pharyngeal exudate

1.85 (1.58-2.16)

0.78 (0.74-0.82)

0.38 (0.32-0.44)

0.79 (0.73-0.84)

Vomiting

1.79 (1.56-2.06)

0.85 (0.81-0.90)

0.28 (0.21-0.36)

0.84 (0.79-0.89)

Tender cervical nodes

1.72 (1.54-1.93)

0.78 (0.75-0.81)

0.40 (0.35-0.46)

0.77 (0.71-0.82)

Sibling with sore throat

1.71 (0.82-3.53)

0.92 (0.82-1.03)

0.18 (0.14-0.23)

0.89 (0.83-0.94)

Halitosis

1.54 (0.79-2.99)

0.95 (0.81-1.12)

0.12 (0.05-0.29)

0.92 (0.86-0.99)

Tonsillar and/or pharyngeal exudate

1.40 (1.10-1.77)

0.86 (0.75-0.98)

0.37 (0.28-0.46)

0.74 (0.68-0.78)

Large cervical nodes

1.39 (1.16-1.67)

0.67 (0.53-0.84)

0.64 (0.50-0.76)

0.54 (0.41-0.67)

Lack of cough

1.36 (1.18-1.56)

0.59 (0.48-0.73)

0.73 (0.66-0.78)

0.46 (0.38-0.55)

Tonsillar exudates

1.35 (0.98-1.87)

0.81 (0.63-1.06)

0.46 (0.27-0.67)

0.66 (0.48-0.80)

Tonsillar swelling

1.27 (1.04-1.54)

0.67 (0.52-0.85)

0.70 (0.64-0.76)

0.44 (0.32-0.57)

Dysphagia

1.22 (1.00-1.48)

0.68 (0.51-0.91)

0.72 (0.55-0.85)

0.41 (0.23-0.62)

Headache

1.22 (0.95-1.57)

0.90 (0.77-1.04)

0.39 (0.28-0.51)

0.68 (0.58-0.76)

Lack of coryza

1.21 (1.08-1.35)

0.69 (0.55-0.88)

0.72 (0.64-0.79)

0.40 (0.34-0.48)

Abdominal pain

1.18 (0.92-1.51)

0.95 (0.89-1.03)

0.24 (0.19-0.30)

0.79 (0.75-0.83)

Red tonsils and/or pharynx

1.13 (0.96-1.33)

0.41 (0.16-1.02)

0.93 (0.85-0.96)

0.18 (0.09-0.35)

Reported fever

1.07 (0.96-1.19)

0.86 (0.67-1.11)

0.71 (0.58-0.82)

0.33 (0.23-0.49)

Red tonsils

1.07 (0.86-1.34)

0.82 (0.40-1.69)

0.80 (0.60-1.00)

0.25 (0.00-0.51)

Red pharynx

1.06 (0.95-1.18)

0.56 (0.27-1.17)

0.93 (0.81-0.98)

0.12 (0.03-0.34)

Documented temperature >38° or >38.5°C

1.02 (0.87-1.21)

0.98 (0.83-1.15)

0.50 (0.36-0.63)

0.51 (0.38-0.65)

Summer

0.86 (0.61-1.20)

1.02 (1.00-1.05)

0.13 (0.00-0.33)

0.85 (0.65-1.04)

Arthralgia

0.74 (0.18-3.08)

1.02 (0.97-1.06)

0.09 (0.00-0.25)

0.90 (0.77-1.04)

Conjunctivitis

0.73 (0.46-1.16)

1.02 (0.98-1.05)

0.05 (0.02-0.11)

0.94 (0.85-0.98)

Acute otitis media

0.65 (0.14-2.91)

1.04 (0.93-1.16)

0.03 (0.01-0.05)

0.94 (0.84-1.04)

History of tonsillectomy

0.64 (0.49-0.84)

1.07 (1.03-1.11)

0.11 (0.08-0.13)

0.84 (0.81-0.86)

Hoarseness

0.62 (0.46-0.83)

1.04 (1.03-1.06)

0.06 (0.03-0.12)

0.90 (0.85-0.93)

Diarrhea

0.51 (0.33-0.79)

1.04 (0.99-1.11)

0.03 (0.00-0.06)

0.93 (0.86

Modified from: Shaikh et al. 2012

This post and podcast are dedicated to Sarah Werner for her constant encouragement of the story in all of us.  Check out Write Now with Sarah Werner.

Selected References

Cheung L et al. Throat swab have no influence on the management of patients with sore throats. J Laryngol. 217; 131:977-981.
Ebell MH et al. Rational Clinical Examination: Does This Patient Have Streptococcal Pharyngitis? JAMA. 2000;284(22):2912-2918
Homme JH et al. Duration of Group A Streptococcus PCR positivity following antibiotic treatment of pharyngitis. Diagn Microbiol Infect Dis. 2018 Feb;90(2):105-108.
Nakhoul GN et al. Management of Adults with Acute Streptococcal Pharyngitis: Minimal Value for Backup Strep Testing and Overuse of Antibiotics. J Gen Intern Med. 2013 Jun; 28(6): 830–834.
Oliver J et al. Group A Streptococcus pharyngitis and pharyngeal carriage: A meta-analysis. PLoS Negl Trop Dis. 2018 Mar 19;12(3):e0006335.
Shaikh N, Leonard E, Martin JM. Prevalence of streptococcal pharyngitis and streptococcal carriage in children: a meta-analysis. Pediatrics. 2010 Sep;126(3):e557-64.
Shaikh et al. Accuracy and Precision of the Signs and Symptoms of Streptococcal Pharyngitis in Children: A Systematic Review. J Pediatrics. 2012; 3:487-493.e3

Jul 1, 2018

How do we make the diagnosis?

What now?

 

Concussion in Sport Group Guidelines

Concussion Recognition Tool (for coaches, trainers on field)

Child Sports Concussion Assessment Tool, 5th Ed. (Child SCAT); Ages 5-12

Sports Concussion Assessment Tool, 5th Ed. (SCAT5); Ages 13 and Up

This post and podcast are dedicated to the great K Kay Moody, DO, MPH for her stalwart effort to care for both patient and doctor. Thank you for all that you do to help us to be our best and for promoting #FOAMed #FOAMped and #MedEd.

References

Churchill NW et al. The first week after concussion: Blood flow, brain function and white matter microstructure. Neuroimage Clin. 2017; 14: 480–489.
Ellis MJ et al. Psychiatric outcomes after pediatric sports-related concussion. J Neurosurg Pediatr. 2015; 16:709-718.
Graham R et al. and the Committee on Sports-Related Concussions in Youth; Board on Children, Youth, and Families; Institute of Medicine; National Research Council. Sports-Related Concussions in Youth: Improving the Science, Changing the Culture. Washington (DC): National Academies Press (US); 2014 Feb 4.
Harmon KG et al. American Medical Society for Sports Medicine position statement: concussion in sport. Br J Sports Med. 2013; 47:15-26.
McCrory P et al. Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2016
Purcell LK et al. What factors must be considered in “return to school” following concussion and what strategies or accommodations should be followed? Br J Sports Med. 2018; 0:1-15.
Wang KK et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Exp Rev Molec Gen. 2018; 18(2):165-180.
Wang Y et al. Cerebral Blood Flow Alterations in Acute Sport-Related Concussion. J Neurotrauma. 2016 Jul 1; 33(13): 1227–1236.

Jun 1, 2018

PEMplaybook.org

May 1, 2018

PEMplaybook.org

Apr 1, 2018

 

References

Baracco R et al. Pediatric Hypertensive Emergencies. Curr Hypertens Rep. 2014; 16:456.

Belsha CW. Pediatric Hypertension in the Emergency Department. Ann Emerg Med. 2008; 51(3):21-24.

Chandar J et al. Hypertensive crisis in children. Pediatr Nephrol. 2012; 27:741-751.

Dionne JM et al. Hypertension Canada’s 2017 Guidelines for the Diagnosis, Assessment, Prevention, and Treatment of Pediatric Hypertension. Canadian J Cardiol. 2017; 33:577-585

*Flynn JT, Kaelber DC, Baker-Smith CM, et al; SUBCOMMITTEE ON SCREENING AND MANAGEMENT OF HIGH BLOOD PRESSURE IN CHILDREN. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics. 2017; 140(3):e20171904

Gilhotra Y et al. Blood pressure measurements on children in the emergency department. Emergency Medicine Australasia. 2006; 18:148-154.

Lurbe E et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016; 34:1-35.

Patel NH et al. Evaluation and management of pediatric hypertensive crises: hypertensive urgency and hypertensive emergencies. Open Access Emergency Medicine. 2012; 4:85-92.

Yang WC et al. Clinical Analysis of Hypertension in Children Admitted to the Emergency Department. Pediatr Neonatol. 2010; 1:44-51.

 

Addendum: Causes of Malignant Hypertension by Age

Infant to Toddler Preschool to School Age Adolescent to Adult
Renal disease Renal disease Primary hypertension
Coarctation of the aorta Coarctation of the aorta Medication non-adherence
Bronchopulmonary dysplasia Drug induced/toxicologic Renal disease
Increased intracranial pressure Increased intracranial pressure Increased intracranial pressure
Volume overload Pheochromocytoma Pheochromocytoma
Congenital adrenal hyperplasia Primary hypertension Drug induced/toxicologic

Adapted from: Constantine E. Hypertension. In: Textbook of Pediatric Emergency Medicine, 6th Ed. Fleischer GR, Ludwig S, Henretig FM (Eds). Lippincott, Williams & Wilkins, Philadelphia. 2010; p315.

 

This post and podcast are dedicated to Manpreet 'Manny' Singh for his collegiality, collaboration, and overall awesomeness. 

Mar 1, 2018

A Social Visit or Your Most Dangerous Presentation Tonight?

[Details in Audio]

This post and podcast are dedicated to Henry Goldstein, B.Pharm, MBBS for his tireless dedication to all things #FOAMed, #FOAMped, and #MedEd.  You are awesome.  Make sure to visit Don't Forget the Bubbles!

References

Cohen GM, Albertini LW. Colic. Pediatr Rev. 2012; 33(7):332-3.

Friedman SB et al. The crying infant: diagnostic testing and frequency of serious underlying disease. Pediatrics. 2009; 123(3):841-8

Herman M, Le A. The crying infant. Emerg Med Clin North Am. 2007 Nov;25(4):1137-59.

Poole SR. The infant with acute, unexplained, excessive crying. Pediatrics. 1991; 88 (3): 450-5.

Prentiss KA, Dorfman DH. Pediatric Opthalmology in the Emergency Department. Emerg. Med. Clin. N. Am. 2008; 26: 181-198.

Shope TR, Rieg TS, Kathiria NN. Corneal abrasions in young infants. Pediatrics. 2010 Mar;125(3):e565-9. Epub 2010 Feb 8.

Feb 1, 2018

You know how to intubate safely.  You can recite all of the Ps backwards and forwards.

Until you can't.

Real-time trouble-shooting.

[Details in Audio]


This post and podcast are dedicated to Mads Astvad for sharing his enthusiasm, clinical excellence, and #FOAMed warrior spirit.

Tak, min ven!  #SMACConia #Vikingeblod

Jan 1, 2018

Ovarian torsion is like the MI of the pelvis.  Sometimes all it takes is a good story to investigate.

When to worry, when to walk it off, and when to work it up:

 

 

What is the typical presentation of ovarian torsion?

There is none.  The presentation varies so much, we need a rule to live by:

Unilateral pelvic pain in a girl is ovarian torsion until proven otherwise.  This includes the cases in which you are concerned about appendicitis.  They both can be fake-outs.

Often the pain is severe and abrupt, but trying to tease this out is often not fruitful.

Here are the often-reported signs and symptoms associated with ovarian torsion:

Stabbing pain, 70%

Nausea and vomiting, 70%

Sudden, sharp pain in the lower abdomen, 59%

Pain radiating to the back, flank, or groin, 51%

Peritoneal signs, 3%

Fever, less than 2%

And of course…no pain on presentation…30%...intermittent torsion.

What is the mechanism of ovarian torsion?

  1. Structurally abnormal ovary (including cysts) that causes the ovary to flop over and twist on its vascular axis
  2. Hypermobile ovary with vigorous movement twists on its vascular pedicle and cuts off blood supply

The Dual Blood Supply to the Ovaries: Why Doppler Flow can Fool You

What ultrasound findings suggest ovarian torsion?

  1. The enlarged hyper or hypoechoic ovary from generalized edema
  2. Peripherally displaced follicles with hyperechoic central stroma – this is called the string of pearls sign, because the stroma is edematous, leaving the follicles to stand out
  3. A midline ovary – if the ovary magically makes it to midline, something is up
  4. Free fluid in the pelvis – this is seen in the vast majority of cases

As far as Doppler flow goes, you may see one of several scenarios:

  1. Little or no venous flow – this is very common, as we talked about, because the low pressure venous system is the first to take a hit in torsion
  2. Totally absent arterial flow – this is not as common, but totally diagnostic
  3. There may be no flow in diastole, or the flow may even be reversed. Rememver the red and blue of dopple does not correspond to arterial and venous.  Doppler is a vector.  Red is fluid coming towards the probe, blue is programmed to present flow away from the probe.  If you have just one or the other, then by definition there is a problem with the vascular circuit.

Other things you may see on ultrasound include focal tenderness with the probe, or the whirlpool sign – this is a twisted vascular pedicle.  

In children, is there an ovarian size (volume) that rules out torsion?”

In the Journal of Pediatric Radiology, Servaes et al catalogued the ultrasound findings in children with surgically confirmed torsion over a 12 year period.  In this case series of 41 patients, the median age was 11.  The age range was one month old to 21 years of age.  They found that in torsed ovaries, the ovarian volume was 12 x that compared to the normal, non-torsed contralateral ovary.

That is to say, in this case series all torsed ovaries were larger than the normal contralateral ovary.

 

Summary

Sudden unilateral lower abdominal or pelvic pain in a female? Think torsion.

Have a low threshold for investigation.

Know the performance characteristics of ultrasound findings and involve a gynecologist early.

 

This post and podcast are dedicated to Stephanie Doniger, MD for her enthusiasm, spirit, and expertise in #MedEd #FOAMed #FOAMped #POCUS 

 
References

Abe M, Sarihan H. Oophoropexy in children with ovarian torsion. Eur. J. Pediatr. Surg. 2004;14:168.

Aziz D, Davis V, Allen L, Langer J. Ovarian torsion in children: Is oophorectomy necessary? J. Pediatr. Surg. 2004;39:750-3.

Bristow RE, Nugent AC, Zahurak ML, et al. Impact of surgeon specialty on ovarian-conserving surgery in young females with an adnexal mass. J. Adolesc. Health 2006;39:411.

Chang YJ, Yan DC, Kong MS, et al. Adnexal torsion in children. Pediatr. Emerg. Care. 2008;24:534-7.

Conforti A, Giorlandino C, Bagolan P. Fetal ovarian cysts management and ovarian prognosis: a report of 82 cases. J. Pediatr. Surg. 2009;44:868; author reply 868-9.

Guthrie BD, Adler MD, Powell EC. Incidence and trends of pediatric ovarian torsion hospitalizations in the United States, 2000-2006. Pediatrics 2010;125:532-8. Epub 2010 Feb 1.

Houry D, Abbott JT. Ovarian torsion: a fifteen-year review. Ann. Emerg. Med. 2001;38:156-9.

Huang TY, Lau BH, Lin LW, Wang TL, Chong CF, Chen CC. Ovarian cyst torsion in a toddler. Am. J. Emerg. Med. 2009;27:632, e1-3.

Hurh PJ, Meyer JS, Shaaban A. Ultrasound of a torsed ovary: characteristic gray-scale appearance despite normal arterial and venous flow on Doppler. Pediatr. Radiol. 2002;32:586-8. Epub 2002 May 25.

Kokoska E, Keller M, Weber T. Acute ovarian torsion in children. Am. J. Surg. 2000;180:462-5.

Oltmann SC, Fischer A, Barber R, Huang R, Hicks B, Garcia N. Cannot exclude torsion – a 15-year review. J. Pediatr. Surg. 2009;44:1212-6; discussion 1217.

Chmitt ER et al. Twist and Shout! Pediatric Ovarian Torsion Clinical Update and Case Discussion. Pediatr Emerg Care. 2013; 29(4):518-523.

Servaes S, Zurakowski D, Laufer MR, Feins N, Chow JS. Sonographic findings of ovarian torsion in children. Pediatr. Radiol. 2007;37:446-51. Epub 2007 Mar 15.

Valsky DV. Added value of the gray-scale whirlpool sign in the diagnosis of adnexal torsion. Ultrasound Obstet. Gynecol. 2010;36:630-4.

Dec 1, 2017

Dogma often dictates routine care.

There are times when we have to attend to paradigm shifts.

An easy way to save lives?  Just say no to (these) drugs:


Codeine

Normally metabolized into codeine-6-glucuronide (50-70%) and norcodeine (10-15%).  Codeine, codeine-6-glucuronide, and norcodeine have low affinity for the μ (mu) receptor.

However, the most active metabolite of codeine is morphine with 200x the affinity for the mu receptor as the codeine derivates.  The problem is, people vary in its metabolism from 0-15% of codeine is metabolized to morphine.

Ok, codeine is lame at best, unpredictable at worst.

True.  Unless you are hiding a genetic time bomb.

You're an ultra-rapid metabolizer.

Some people have multiple extra copies of the DNA sequence for the CYP2D6 enzyme.  Ultra rapid metabolizers funnel a huge proportion of their codeine into morphine metabolism, resulting in a bolus of morphine, ending in apnea.

Promethazine with codeine

This combination is no better than placebo -- all of the risks, with no proven benefit.  This combination is notoriously abused -- as purple drank or sizzurp.  The rapper Pimp C died of this.

Speaking of cough syrups...

The AAP recommends no cough and cold preparations in children under age 6.  They have not been adequately studied in young children, and are not recommended for treating the common cold.

What then?  You gotta give me something, doctor!

Ok, Honey!

In a study in the Archives of Pediatric and Adolescent Medicine, Dr Paul and colleagues published: Effect of honey, dextromethorphan, and no treatment on nocturnal cough and sleep quality for coughing children and their parents.  They compared a buckwheat honey, honey-flavored dextromethorphan (DM) and no treatment 30 min before bed for children with upper respiratory tract infections.

Of the three, honey, dextromethorphan, and no treatment – honey scored the best for symptom improvement and cough frequency.

Over age 1?  Cough and cold?  Honey.  There is no concern about accidental overdose, parents are doing something with a proven effect, and compliance is pretty much 100% -- and Grandma approves.

Dextromethorphan

No proven benefit over placebo.  Also widely abused, in pill form ("Skittles") and/or liquid form mixed in alcoholic beverage ("robotripping").

Alternatives to Codeine

Details in Audio:

Morphine liquid

Acetaminophen and Hydrocodone

 

PEARLS AND PITFALLS IN PEDIATRIC PAIN

Allow the child to speak for himself whenever possible. After acknowledging the parent’s input, perhaps try “I want to make sure I understand how the pain is for you. Tell me more.”

Engage parents and communicate the plan to them. Elicit their expectations, and give them of preview of what to expect in the ED.

Opioids are meant for pain caused by acute tissue injury, for the briefest period of time feasible. Older school-aged children and adolescents are increasingly at risk for opioid dependence and addiction.

Give detailed advice on how to manage pain at home. Set expectations. Let them know you understand and will help them through your good advice that will carry them through this difficult time. Patients and families often just need a plan. Map it out clearly.

And...

Just say no to: codeine, promethazine with codeine, and dextramethorphan.

Selected References

Dhaliwal G, Hsu D. Tramadol Ultra Rapid Metabolizers at Risk for Respiratory Depression. Pain Physician. 2016; 19(2):E361.

European Medicines Agency. Restriction on the use of codeine for pain relief in children—CMDh endorses PRAC recommendation [press release]. June 28, 2013.

FDA. Most Young Children With a Cough or Cold Don't Need Medicine.

Hartling L et al. How Safe Are Common Analgesics for the Treatment of Acute Pain for Children? A Systematic Review. Pain Res Manag. 2016; 2016: 5346819.

Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43(13):879-923.

Jin J. Risks of Codeine and Tramadol in Children. JAMA. 2017 Oct 17;318(15):1514. doi: 10.1001/jama.2017.13534.

Kelly LE et al. More Codeine Fatalities After Tonsillectomy in North American Children. Pediatrics. 2012; 129(5).

Kirchheiner J, Schmidt H, Tzvetkov M, et al. Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J. 2007;7(4):257–265

Orliaguet G et al. A Case of Respiratory Depression in a Child With Ultrarapid CYP2D6 Metabolism After Tramadol. Pediatrics. 2015; 135(3).

Poonai N. Analgesia for children in acute pain in the post-codeine era. Curr Pediatr Rev. 2017 Aug 28. doi: 10.2174/157339631366617082911563.1.

 

This post and podcast are dedicated to Bryan Hayes, PharmD for his practical approach to pharmacologic conundrums and to David Juurlink, MD, PhD for his steadfast dedication to patient safety and clinician education.  Check out Bryan's helpful blog and clinical resource, PharmERToxGuy.  Check out David anywhere one utters the word Tra-ma-dol.

Nov 1, 2017

Not all head trauma is minor.

Not all minor head trauma is clinically significant.

 

How can we sort out the overtly ok from the sneakily serious?

 

 

Mnemonics for bedside risk stratification of minor pediatric blunt head trauma, based on PECARN studies:

[Details in Audio]

 

Blunt Head Trauma in Children < 2 years of Age

 

 

Blunt Head Trauma in Children ≥ 2 years of Age

 

 

Image Gently Campaign

 

Medical Imaging Record (maintain like an immunization card)

 

Brochure for Parents: Just in Time Education

 

Selected References

Dayan PS et al. Association of Traumatic Brain Injuries with Vomiting in Children with Blunt Head Trauma. Ann Emerg Med. 2014; 63(6):657-665.

Dayan PS et al. Headache in Traumatic Brain Injuries from Blunt Head Trauma. Pediatrics. 2015; 135(3):504-512.

Horeczko T, Kuppermann N. To scan or not to scan: pediatric minor head trauma in your office, clinic or emergency department. Contemporary Pediatrics. 2012;29(8):40-47.

Kupperman et al. Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. Lancet. 2009;374(9696):1160-70.

Lee LK et al. Isolated Loss of Consciousness in Children with Minor Blunt Head Trauma. JAMA Pediatr. 2014; 168(9):837-843.

Magana JN, Kuppermann N. The PECARN TBI Rules Do Not Apply To Abusive Head Trauma. Acad Emerg Med. 2017; 24(3)382-384.

Rogers AJ et al. Children with Arachnoid Cysts who Sustain Blunt Head Trauma: Injury Mechanisms and Outcomes. Acad Emerg Med. 2016; 23:358-361.

 

This post and podcast are dedicated to Kevin Klauer, DO, EJD, FACEP for his dedication to education, and for his unique balance of safety and keeping it real.  Thank you.

Oct 1, 2017

Comfortable with G-tubes, tracheostomies, and VP shunts?

Good. 

Get ready for the next level: Vagus Nerve Stimulators, Intrathecal Pumps, and Ventricular Assist Devices.

 

Details in Audio:

Vagus Nerve Stimulators

For intractable epilepsy; sends retrograde signal up corona radiata

Also may be used in: depression, bulimia, Alzheimer, narcolepsy, addiction, and others

VNS magnets

Are VNS safe in MRI?

Are VNS safe in everyday life?

Intrathecal Pumps

Used to infuse basal rate of drug, usually baclofen for spasticity, but pump may contain morphine, bupivicaine, clonidine.  Also used for severe MS, stroke, TBI, chronic pain.  Verify the medication and identify the toxidrome if symptomatic.

Ventricular Assist Devices

May be left ventricular assist, right ventricular assist, or biventricular assist device.

 

References

Vagus Nerve Stimulators (VNS)

Elliott RE, Rodgers SD, Bassani L et al. Vagus nerve stimulation for children with treatment-resistant epilepsy: a consecutive series of 141 cases. J Neurosurg Pediatrics. 2011; 7:491-500.

Groves DA, Brown VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neuroscience and Biobehavioral Reviews. 2005; 29: 493–500.

Panebianco M, Rigby A,Weston J,Marson AG. Vagus nerve stimulation for partial seizures. Cochrane Database of Systematic Reviews. 2015; 4, Art. No.: CD002896.

Ruffoli R,  Giorgi FS, Pizzanelli C et al. The chemical neuroanatomy of vagus nerve stimulation. Journal of Chemical Neuroanatomy; 2011; 42: 288–296.

Intrathecal Pumps

Borowski A, Littleton AG, Borkhuu B et al. Complications of Intrathecal Baclofen Pump Therapy in Pediatric Patients. J Pediatr Orthop. 2010; 30:76–81.

Ghosh D, Mainali G, Khera J, Luciano M.  Complications of Intrathecal Baclofen Pumps in Children: Experience from a Tertiary Care Center. Pediatr Neurosurg. 2013; 49:138–144.

Yang TF, Wang JC, Chiu JW et al. Ultrasound-guided refilling of an intrathecal baclofen pump—a case report. Childs Nerv Syst. 2013; 29:347–349.

Yeh RN, Nypaver MM, Deegan TJ, Ayyangar R. Baclofen Toxicity in an 8-year-old with an Intrathecal Baclofen Pump. J Emerg Med. 2004; 26(4): 163–167.

Ventricular Assist Devices

Blume ED, Naftel DC, Bastardi HJ et al. for the Pediatric Heart Transplant Study Investigators. Outcomes of Children Bridged to Heart Transplantation With Ventricular Assist Devices: A Multi-Institutional Study. Circulation. 2006; 113: 2313-2319.

Colón JE, Laborde ME, Nossaman BD. Case Report: Left Ventricular Assist Device in a 12 Year Old Child as a Bridge to Heart Transplantation. Section of Congenital Cardiac Anesthesia, Ochsner Medical Center, New Orleans, Louisiana. 2012.

Fan Y, Weng YG, Huebler M et al. Predictors of In-Hospital Mortality in Children After Long-Term Ventricular Assist Device Insertion. J Amer Coll Cardiol. 2011; 58(11):1183–90

Fraser CD,  Jaquiss RDB, Rosenthal DN et al. Prospective Trial of a Pediatric Ventricular Assist Device. N Engl J Med. 2012;367:532-41.

Gazit AZ, Gandhi SK, Canter CC. Mechanical Circulatory Support of the Critically Ill Child Awaiting Heart Transplantation. Current Cardiology Reviews. 2010; 6: 46-53.

VanderPluym CJ, Fynn-Thompson F, Blume ED.  Ventricular Assist Devices in Children Progress With an Orphan Device Application. Circulation. 2014;129:1530-1537.

This post and podcast are dedicated to Joe Bellezzo, MD, FACEP and Zack Shinar, MD, FACEP for bringing us all up to speed.  Listen to their fantastic ED ECMO podcast here.

May 1, 2017

Most newborns will have some jaundice.  Most jaundice is benign.

So, how can we sort through the various presentations and keep our newborns safe?

Pathologic Jaundice

When a baby is born with jaundice, it’s always bad.  This is pathologic jaundice, and it’s almost always caught before the baby goes home.  Think about ABO-incompatbility, G6PD deficiency, Crigler-Najjar, metabolic disturbances, and infections to name a few.  Newborns are typically screened and managed.

Physiologic Jaundice

Physiologic jaundice, on the other hand, is usually fine, until it’s not.

All babies have some inclination to develop jaundice.  Their livers are immature.  They may get a little dehydrated, especially if mother’s milk is late to come in.  In today’s practice, we are challenged to catch those at risk for developing complications from rising bilirubin levels.

Hyperbilirubinemia is the result of at least one of three processes: you make too much, you don’t process it enough, or you don’t get rid of it fast enough.

Increased production

Bilirubin mostly comes from the recycling of red blood cells. Heme is broken down in in the liver and spleen to biliverdin then bilirubin.

Normal, full term babies without jaundice run a little high -- bilirubin production is two to three times higher than in adults, because they are born with a higher hematocrit.  Also, fetal hemoglobin is great at holding on to oxygen, but has a shorter life span, and high turn-over rate, producing more bilirubin.

Impaired conjugation

Think of bilirubin as your email.  Unconjugated bilirubin is your unread email.  To process it or get rid of it – you have to open it.  Of course, the more unread messages that accumulate, the more unwell you feel.

Conjugated bilirubin is your opened and processed email.  So much easier to sort out, deal with, and get rid of.

Decreased excretion

Both unread email and unconjugated bilirubin continue to float around in your inbox.  Unconjugated bilirubin keeps getting reabsorbed in the intestinal mucosa through enterohepatic circulation.

Processed email and conjugated bilirubin are easier to sort out.  Conjugated bilirubin is water soluble, so it goes right into the read folder in your gallbladder, and is excreted off your inbox.  Later on down the line in the intestine, conjugated bilirubin can’t be reabsorbed through the intestinal mucosa.  Like when you open an email and forget about it – it passes on through, out of your system.

Newborns are terrible at answering emails.  There is a lot of unread unconjugated bilirubin is floating around.  The liver and spleen are just not able to keep up.

Also, newborns have a double-whammy administrative load.  Normally, bacteria in the gut can further break down conjugated bilirubin to urobilin and get excreted in the urine.  The infant’s gut is relatively sterile, so no admin assistance there.  Just to add to the workload a poor little newborn has to do – he is being sabotaged by extra beta-glucuronidase which will take his hard-earned conjugated bilirubin and unconjugate it again, then recycle it, just like email you “mark as unread”.

How Does this All Go Down?

The recommended followup is 48 hours after discharge from the nursery for a routine bilirubin check, often in clinic, and often via the transcutaneous route.

More Specifically:

Infant Discharged Should Be Seen by Age
Before age 24 h 72 h
Between 24 and 48 h 96 h
Between 48 and 72 h 120 h

The neonate will end up in your ED off hours, if there is concern, if his status deteriorates, or simply by chance.  We need to know how to manage this presentation, because time is of the essence to avoid complications if hyperbilirubinemia is present.

Critical Action #1:

Assess risk for developing severe hyperbilirubinemia.

This will tell you: check now in ED or defer to clinic (default is to check).

Risk Factors for Developing Hyperbilirubinemia
Total serum bilirubin/Transcutaneous bilirubin in high-risk zone
Jaundice in first 24 hours
ABO incompatibility with positive direct Coombs, known hemolytic disease, or elevated ETCO
Gestational age 35-36 weeks
Prior sibling had phototherapy
Cephalohematoma or bruising
Exclusive breastfeeding, especially with poor feeding or weight loss
East Asian Race

Critical Action #2

Check bilirubin and match this with how old the child is -- in hours of life -- at the time of bilirubin measurement.

This will tell you: home or admission.

Use the Bilitool or Bhutani Nomogram (below).

 

Can I go Home Now?

Risk Stratification for Developing Severe Hyperbilirubinemia. Bhutani et al. Pediatrics. 1999.

In general, babies at low-risk and low-intermediate risk can go home (see below).  Babies at high-intermediate or high risk are admitted (see below).

Critical Action #3:

Assess risk for developing subsequent neurotoxicity.

This will tell you: a) phototherapy or b) exchange transfusion

 

 

Phototherapy Now?

 

 

Exchange Transfusion Now?

Threshold for Initiating Exchange Transfusion by Risk Stratum. Bhutani et al. Pediatrics. 1999.

Home care

The neonate who is safe to go home is well appearing, and not dehydrated.  His total bilirubin is in the low to low-intermediate risk for developing severe hyperbilirubinemia, and he is not at high risk for neurotoxicity based on risk factors.

Babies need to stay hydrated.  Breast feeding mothers need encouragement and need to offer feeds 8-12 times/day – an exhausting regimen.  The main message is: stick with it.  Make sure to enlist the family's help and support to keep Mom hydrated, eating well, and resting whenever she can.  Supplementing with formula or expressed breast milk is not routinely needed.  Be explicit that the neonate should not receive water or sugar water – it can cause dangerous hyponatremia.  A moment of solid precautionary advice could avert a disaster in the making.

The child’s pediatrician will help more with this, and you can remind nursing mothers of the excellent La Leche League – an international group for breastfeeding support.  They have local groups everywhere, including a hotline to call.

Nursery Care

If the baby is at high intermediate or high risk for hyperbilirubinemia, then he should be admitted for hydration, often IV.  Most babies with hyperbilirubinemia are dehydrated, which just exacerbates the problem.

Bililights or biliblankets, provide the baby with the right blue spectrum of light to isomerize bilirubin to the more soluble form.  Traditionally, we have thought them to be more effective or safer than filtered sunlight.  A recent randomized control trial by Slusher et al. in the New England Journal of Medicine compared filtered sunlight versus conventional phototherapy for safety and efficacy in a resource-poor environment.  These were all term babies with clinically significant jaundice in Nigeria.  To standardize the intervention, they used commercial phototherapy canopies that remove most UV rays. None of them became dehydrated or became sunburned.  The filtered sunlight resulted in a 93% successful treatment versus 90% for conventional phototherapy.  My take away: we now have some evidence basis for using filtered sunlight as an adjunct for babies well enough to go home.

Critical Care

Although rare, the critically ill neonate with hyperbilirubinemia requires immediate intervention.

He will be dehydrated – possibly in shock.  He will be irritable.

Or, he may just have a dangerously high bilirubin level – at any minute he could develop bilirubin induced neurologic dysfunction, or BIND, especially when bilirubin concentrations reach or surpass 25 mg/dL (428 micromol/L).  The bilirubin is so concentrated that it leeches past the blood brain barrier and causes neuronal apoptosis.  BIND is a spectrum from acute bilirubin encephalopathy to kernicterus, all involving some disorder in vision, hearing, and later gait, speech, and cognition.

Acute bilirubin encephalopathy starts subtly.  The neonate may be sleepy but hypotonic or have a high-pitched cry; he maybe irritable or inconsolable, jittery or lethergic.

The dehydration and neurologic dysfnction from the hyperbilirubinemia may even cause fever.  Check the bilirubin in any neonate you are working up for sepsis.

Acute bilirubin encephalopathy may progress to an abnormal neurologic exam, seizures, apnea, or coma.

Kernicterus is the final, permanent result of bilirubin encephalpathy.  The child may have choreoathetoid cerebral palsy with chorea, tremor, ballismus, and dystonia.  He may have sensorineural hearting loss, or cognitive dysfunction.

It is for this reason that any child sick enough to be admitted should be considered for exchange transfusion.  Most babies need just a little gentle rehydration and bililights, but to be sure, the admitting team will look at a separate nomogram to gage the child’s risk and decide whether to pull the trigger on exchange transfusion.  For our purposes, a ballpark estimate is that if the total serum bilirubin is 5 mg/dL above the phototherapy threshold, or if they have any red flag signs or symptoms, then exchange transfusion should be started.

Exchange transfusion involves taking small aliquots of blood from the baby and replacing them with donor blood.  It’s often a manual procedure, done with careful monitoring.  It can be done with any combination of umbilical arteries or veins with peripheral arteries or veins.  In general, arteries are the output, veins are for transfusion. The baby may need a double-volume exchange, which ends up replacing about 85% of circulating blood, a single-voume exchange, replacing about 60% of blood, or any fraction of that with apartial volume exchange.  It is a very delicate procedure that requires multiple hours and often multiple staff.

For our pruposes, just be aware that the jaundiced baby in front of you may need escalation of his care.

Summary

Find out the hour of life of the baby at the time of bilirubin measurementIdentify risk factors for developing severe hyperbilirubinemia and/or neurotoxicity

The child with low to low-intermediate risk may be a good outpatient candidate provided he is well, not dehydrated, and follow-up is assured.

The child with high-intermediate to high-risk for developing severe hyperbilirubinemia should be admitted for hydration, bililights, and/or assessment for exchange transfusion.

The unwell child with or without current neurologic findings should have immediate exchange transfusion.

References

Benitz WE. Hospital Stay for Healthy Term Newborn Infants. Pediatrics. 2015; 135(5):948-53.

Bhutani V et al. Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation. Pediatrics. 2004; 114(1).

Bhutani VK, Wong RJ. Bilirubin Neurotoxicity in Preterm Infants: Risk and Prevention. J Clin Neonatol. 2013 Apr-Jun; 2(2): 61–69.

Bosschaart N et al. Limitations and Opportunities of Transcutaneous Bilirubin Measurements. Pediatrics. 2012; 129(4).

Colletti JE, Kothari S, Jackson DM, Kilgore KP, Barringer K. An emergency medicine approach to neonatal hyperbilirubinemia. Emerg Med Clin North Am. 2007 Nov;25(4):1117-35, vii.

Gamaleldin R et al. Risk Factors for Neurotoxicity in Newborns With Severe Neonatal Hyperbilirubinemia. Pediatrics. 2011; 128(4):825-31.

Lauer BJ, Spector ND. Hyperbilirubinemia in the Newborn. Pediatrics in Review. 2011; 32(8):341-9.

Maisels J et al. Hyperbilirubinemia in the Newborn Infant ≥35 Weeks’ Gestation: An Update With Clarifications. Pediatrics. 2009; 124(4):1193-6.

Smitherman H, Stark AR, Bhutani VK. Early recognition of neonatal hyperbilirubinemia and its emergent management.  Semin Fetal Neonatal Med. 2006 Jun;11(3):214-24.

Vandborg PK, Hansen BM, Greisen G, Ebbesen F. Dose-response relationship of phototherapy for hyperbilirubinemia. Pediatrics. 2012 Aug;130(2):e352-7.

This post and podcast are dedicated to Gita Pensa, MD, for her commitment to #FOAMed and passion for asynchronous learning and education innovation.

Apr 1, 2017

Children the world over are fascinated with what can possibly “fit” in their orifices.  Diagnosis is often delayed.  Anxiety abounds before and during evaluation and management.

 

 

Most common objects:1,2

Food Coins Toys
Insects Balls, marbles Balloons
Magnets Crayon Hair accessories, bows
Beads Pebbles Erasers
Pen/marker caps Button batteries Plastic bags, packaging

Non-pharmacologic techniques

Set the scene and control the environment.  Limit the number of people in the room, the noise level, and minimize “cross-talk”.  The focus should be on engaging, calming, and distracting the child.

Quiet room; calm parent; “burrito wrap”; guided imagery; have a willing parent restrain the child in his or her lap – an assistant can further restrain the head.

Procedural Sedation

Most foreign bodies in the ear, nose, and throat in children can be managed with non-pharmacologic techniques, topical aids, gentle patient protective restraint, and a quick hand.  Consider sedation in children with special health care needs who may not be able to cooperate and technically delicate extractions.  Ketamine is an excellent agent, as airway reflexes are maintained.3  Remember to plan, think ahead: where could the foreign body may be displaced if something goes wrong?  You may have taken away his protective gag reflex with sedation.  Position the child accordingly to prevent precipitous foreign body aspiration or occlusion.

L’OREILLE – DAS OHR – вухо – THE EAR – LA OREJA – 耳 – L'ORECCHIO

Essential anatomy:

The external auditory canal. Foreign bodies may become lodged in the narrowing at the bony cartilaginous junction.4  The lateral 1/3 of the canal is flexible, while the medial 2/3 is fixed in the temporal bone – here is where many foreign bodies are lodged and/or where the clinician may find evidence of trauma. 

Pearls:

  • Ask yourself: is it graspable or non-graspable?5
    • Graspable: 64% success rate, 14% complication rate
    • Non-graspable: 45% success rate, 70% complication rate5
  • If there is an insect in the external auditory canal, kill it first. They will fight for their lives if you try to dismember or take them out.  “In the heat of battle, the patient can become terrorized by the noise and pain and the instrument that you are using is likely to damage the ear canal.”5,6  Use lidocaine jelly (preferred), viscous lidocaine (2%), lidocaine solution (2 or 4%), isopropyl alcohol, or mineral oil.
  • Vegetable matter? Don’t irrigate it – the organic material will swell against the fixed structure, and cause more pain, make it much harder to extract, and may increase the risk of infection.

Pifalls:

  • Failure to inspect after removal – is there something else in there?
  • Failure to assess for abrasions, trauma, infection – if any break in skin, give prophylactic antibiotic ear drops
  • Law of diminishing returns: probability of successful removal of ear foreign bodies declines dramatically after the first attempt

 

LE NEZ – DIE NASE – ніс – THE NOSE – LA NARIZ – 鼻 – IL NASO

Essential anatomy:

Nasopharyngeal and tracheal anatomy. Highlighted areas indicate points at which nasal foreign bodies may become lodged.4

Pearls:

  • Consider using topical analgesics and vasoconstrictors to reduce pain and swelling – and improve tolerance of/cooperation with the procedure. Use 0.5% oxymetolazone (Afrin) spray and a few drops of 2 or 4%   Pros: as above.  Cons: possible posterior displacement of the foreign body.7
  • Be ready for the precipitous development of an airway foreign body

Pitfalls:

  • Beware of unilateral nasal discharge in a child – strongly consider retained foreign body.8
  • Do not push a foreign body down the back of a patient's throat, where it may be aspirated into the trachea.
  • Be sure to inspect the palate for “vacuum effect”: small or flexible objects may be found on the roof of the mouth, just waiting to be aspirated.

 

LA GORGE – DER HALS – горло – THE THROAT – LA GARGANTA – 喉 – LA GOLA

Before we go further –

Remember that a foreign body in the mouth or throat can precipitously become a foreign body in the airway.  Foreign body inhalation is the most common cause of accidental death in children less than one year of age.9,10

Go to BLS maneuvers if the child decompensates.

Infants under 1 year of age – back blows: head-down, 5 back-blows (between scapulae), 5 chest-thrusts (sternum).  Reassess, repeat as needed.

Children 1 year and up, conscious – Heimlich maneuver: stand behind patient with arms positioned under the patient’s axilla and encircling the chest. The thumb side of one fist should be placed on the abdomen below the xiphoid process. The other hand should be placed over the fist, and 5 upward-inward thrusts should be performed. This maneuver should be repeated if the airway remains obstructed.  Alternatively, if patient is supine, open the airway, and if the object is readily visible, remove it.  Abdominal thrusts: place the heel of one hand below the xiphoid, interlace fingers, and use sharp, forceful thrusts to dislodge.  Be ready to perform CPR.

Children 1 year and up, unconscious – CPR: start CPR with chest compressions (do not perform a pulse check). After 30 chest compressions, open the airway. If you see a foreign body, remove it but do not perform blind finger sweeps because they may push obstructing objects further into the pharynx and may damage the oropharynx.  Attempt to give 2 breaths and continue with cycles of chest compressions and ventilations until the object is expelled.

Chest films are limited: 80% of airway foreign bodies are radiolucent.11  Look for unilateral hyperinflation on expiratory films: air trapping.

 Essential anatomy:

Most esophageal foreign bodies in children occur at the level of the thoracic inlet / cricopharyngeus muscle (upper esophageal sphincter).  Other anatomically narrow sites include the level of the aortic arch and the lower esophageal sphincter.

Coin en face – in the esophagus – lodged at the thoracic inlet.12  The pliable esophagus accommodates the flat coin against the flat aspect of the vertebra.11

Beware the “double-ring” sign: this is a button battery13

This is an emergency: the electrolyte-rich mucosa conducts a focal current from the narrow negative terminal of the battery, rapidly causing burn, necrosis, and possibly perforation.  Emergent removal is required.

Button batteries that have passed into the stomach do not require emergent intervention – they can be followed closely.

Not a button battery, not a sharp object, not a long object?

If there is no obstruction, consider revaluation the next day – may wait up to 24 hours for passage.14  Sharieff et al.15 found that coins found in the mid to distal esophagus within 24 hours all passed successfully.

What conditions prompt urgent removal?

Size

Infants: objects smaller than 2 cm wide and 3 cm long will likely pass the pylorus and ileocecal valve10

Children and adults: objects smaller than 2 cm wide and 5 cm long will likely pass the pylorus and ileocecal valve9

Character

Sharp objects have a high rate of perforation (35%)1

Pearls:

  • History is essential. Believe the parents and assume there is an aspirated/ingested foreign body until proven otherwise.
  • History of choking, has persistent symptoms and/or abnormal xray? Broncoscopy! Cohen et al.16 found that of 142 patients evaluated at a single site university hospital, 61 had a foreign body. Of the 61 patients, 42 had abnormal physical exams and radiographs and 17 had either abnormal physical exams or radiographs, and 2 had normal physical exams and radiographs, but both had a history of persistent cough.  Bottom line: history of choking PLUS abnormal exam, abnormal films, or persistent symptoms, evaluate with bronchoscopy.
  • For patients with some residual suspicion of an aspirated foreign body (mild initial or improving symptoms; possibly abnormal chest x-ray; low but finite risk), consider chest CT with virtual bronchoscopy as a rule-out strategy.17,18
  • Outpatients who have passed a small and non-concerning object into the stomach or beyond: serial exams and observing stools – polyethylene glycol 3350 (MiraLAX) may be given for delayed passage19

Pifalls:

  • A single household magnet will likely pass through the GI tract, with the aforementioned dimensional caveats. Two or more magnets, however, run the risk of attraction and trans-bowel wall pressure necrosis.
  • Not all magnets are created equal. Neodymium magnet toys (“buckyballs”) were recalled in 2014 (but are still out there!) due to their highly attractive nature.  These magnets must be removed to avoid bowel wall ischemia. 19–21
  • Patients should avoid wearing belt buckles or metallic buttons in case of single magnet ingestion while waiting for the single magnet to pass

DES OUTILS DU MÉTIER – DIE HANDWERKSZEUG – Знаряддя праці

TOOLS OF THE TRADE

LAS HERRAMIENTAS DEL OFICIO – GLI ATTREZZI DEL MESTIERE –  仕事のツール

It’s best to keep your armamentarium as large as you can.

 
Curette

A small foreign body in the lateral 1/3 of the auditory canal may be amenable to a simple curettage.  Hair beads (if the central hole is accessible) may be manipulated out with the angled tip of a rigid curette.  Steady the operating hand by placing your hypothenar eminence on the child’s zygoma or temporal scalp, to avoid jutting the instrument into the ear canal with sudden movement.  There is a large selection of disposable simple and lighted curettes on the market.

Right-angle Hook

Various eponymous hooks are available for this purpose; one in popular use is the Day hook, which may be passed behind the foreign body.22  An inexpensive and convenient alternative to the commercially available right-hooks is a home-made version: make your own by straightening out a paperclip and bending it to a right angle23 at 2-3 mm from the end (be sure not to use the type that have a friable shiny metallic finish, as the residue may be left behind in the ear canal).  If it is completely lodged, use of a right-angle hook will likely only cause trauma to the canal.

Alligator forceps

Alligator forceps are best for grasping soft objects like cotton or paper.  Smooth, round or oval objects are not amenable to extraction with alligator forceps.  When using them, be sure to get a firm, central grip on the object, to avoid tearing it into smaller, less manageable pieces. 

Pro tip: Look before you grip! Be careful to visualize the area you are gripping, to avoid pulling on (and subsequently avulsing) soft tissue in the ear canal.

Cyanoacrylate (Dermabond®, SurgiSeal®)

Apply cyanoacrylate to either side of a long wooden cotton swab (the lecturer prefers the cotton tip side, for improved grip/molding around object).  Immediately apply the treated side to the object in the ear canal in a restrained patient.  Steady the hypothenar eminence on the child’s face to avoid dislodgement of the cotton swab with sudden movement.  Apply the treated swab to the foreign body for 30-60 seconds, to allow bonding.  Slowly pull out the foreign body.  Re-visualize the ear canal for other retained foreign bodies and abrasion or ear canal trauma.

Did the cyanoacrylate drip?  Did the swab stick to the ear canal?

No problem – use 3% hydrogen peroxide or acetone.24  Pour in a sufficient amount, allow to work for 10 minutes.  Both agents help to dissolve ear wax, the compound, or both.  Repeat if needed to debond the cyanoacrylate from the ear canal.24,25

Irrigation

Irrigation is the default for non-organic foreign bodies that are not amenable to other extraction techniques.  Sometimes the object is encased in cerumen, and the only “instrument” that will fit behind the foreign body is the slowly growing trickle of water that builds enough pressure to expulse it.  Do not use if there is any organic material involved: the object will swell, causing much more pain, difficulty in extraction, and possibly setting up conditions for infection.

Position the child either prone or supine, gently restrain (as above).  Let gravity work for you: don’t irrigate in decubitus position with the affected ear up.  It may be more accessible to you, but you may never get the foreign body out.

To use a butterfly needle: use a small gage (22 or 24 g) butterfly set up, cut off the needle, connect the tubing to a 30 mL syringe filled with warm or room-temperature water. Insert the free end of the tubing gently, and “secure” the tubing with your pinched fingers while irrigating (think of holding an ETT in place just after intubation and before taping/securing the tube).  Gently and slowly increase the pressure you exert as you irrigate.

To use an IV or angiocatheter: use a moderate size (18 or 20 g) IV, remove the needle and attach the plastic catheter to a 20 mL syringe, and irrigate as above.

Acetone

Acetone has been used successfully to remove chewing gum, Styrofoam, and superglue from the ear canal24,26,27  Use in cases where there is no suspicion of perforation of the tympanic membrane.

Docusate Sodium (Colace®)

Cerumen is composed of sebaceous ad ceruminous secretions and desquamated skin.  Genetic, environmental, and anatomical factors combine to trap a foreign body in the external canal.  Use of a ceruminolytic such as docusate sodium may help to loosen and liberate the foreign body.28  Caveat medicus: Adding docusate sodium will make the object more slippery – this may or may not be an issue given the nature of the foreign body.

In the case where loosening the ear wax may aid extraction (and will not cause a slippery mess), consider filling the ear canal will docusate sodium (Colace), having the child lie with the affected side up, waiting 15 minutes, and proceeding.  This is especially helpful when planning for irrigation.

Magnets

Rare earth magnets (a misnomer, as their components are actually abundant) such as neodymium can be useful in retrieving metallic foreign bodies (e.g. button batteries in the nose or ears).29,30  Magnetic “pick-up tools” – used by mechanics, engineers, and do-it-yourselfers – are inexpensive and readily available in various sizes, shapes, and styles such as a telescoping extender.  Look for a small tip diameter (to fit in the ear canal as well as the nose) and a strong “hold” (at least a 3-lb hold).

Alternatively, you may purchase a strong neodymium bar magnet (30- to 50-lb hold) to attach to an instrument such as an alligator forceps, pick-up forceps, or small hemostat (a pacemaker magnet may also work).  The magnetic bar, placed in your palm at the base of the instrument, will conduct the charge (depending on the instrument) and allow you to retrieve many metallic objects.31  Although stainless steel is often said to be “non-magnetic”, it depends on the alloy used, and some may actually respond to the strong rare earth magnet.  Most stainless steel has a minimum of 10.5% chromium, which gives the steel its 'stainless' properties (essentially corrosion resistance).  A basic stainless steel has a “ferritic” structure and is magnetic.  Higher-end stainless steel such as in kitchen cutlery have an “austenitic” structure, with more chromium added, and so less magnetic quality.  (Ironically, the more “economical” instruments in the typical ED suture kit have less chromium, and so are more magnetic – use these with your neodymium bar magnet to conduct the magnetic charge and extract the metallic foreign body.)

Bottom line: if it’s metal, it’s worth a try to use a magnet.  Even if the metal is very weakly magnetic, the strong neodymium magnet may still be able to exert a pull on it and aid in extraction.

Snare Technique

A relatively new method, described by Fundakowski et al.32 consists of using a small length of 24-gauge (or similar) wire (available inexpensively online, and kept in your personal “toolkit”; see Appendix B below) to make a loop that is secured by a hemostat (the 24-gauge wire is easily cut into strips with standard trauma scissors).  After treatment with oxymetolazone (0.05%) and lidocaine (1 or 2%) topically, the loop is passed behind the foreign body (in the case report, a button battery).  Pull the loop toward you until you feel that it is sitting up against the button battery.  Now, turn the hemostat 90° to improve your purchase on the foreign body.  Pull gently out.  This technique is especially useful when the foreign body has created marked edema, either creating a vacuum effect or making it difficult for other instruments to pass.

Balloon Catheters (Katz extractor®, Fogarty embolectomy catheter)

Small-caliber devices (5, 6, or 8 F) originally designed for use with intravascular or bladder catheterization may be used to extract foreign bodies from the ear or nose.7,33  A catheter designed specifically for foreign body use is the Katz extractor.  Inspect the ear or nose for potential trauma and to anticipate bleeding after manipulation (especially the nose).  Deflate the catheter and apply surgical lubricant or 2% lidocaine jelly. Insert the deflated catheter and gently pass the device past the foreign body.  Inflate the balloon and slowly pull the balloon and foreign body out.  Re-inspect after extraction.

NB, from the manufacturer of the Katz extractor, InHealth: “the Katz Extractor oto-rhino foreign body remover is intended principally for extraction of impacted foreign bodies in the nasal passages. This device may also be used in the external ear canal, based upon clinical judgment.”

Mother’s kiss

The mother’s kiss was first described in 1965 by Vladimir Ctibor, a general practitioner from New Jersey.34 “The mother, or other trusted adult, places her mouth over the child’s open mouth, forming a firm seal as if about to perform mouth-to-mouth resuscitation. While occluding the unaffected nostril with a finger, the adult then blows until feeling resistance caused by closure of the child’s glottis, at which point the adult gives a sharp exhalation to deliver a short puff of air into the child’s mouth. This puff of air passes through the nasopharynx, out through the non-occluded nostril and, if successful, results in the expulsion of the foreign body. The procedure is fully explained to the adult before starting, and the child is told that the parent will give him or her a “big kiss” so that minimal distress is caused to the child. The procedure can be repeated a number of times if not initially successful.”34

Positive Pressure Ventilation with Bag Valve Mask

This technique is an approximation of the above mother’s kiss technique – useful for unwilling parents or unsuccessful tries.10,25  The author prefers to position the child sitting up.  A self-inflating bag-mask device is fitted with a very small mask: use an abnormally small mask (otherwise inappropriately small for usual resuscitative bag-mask ventilation) to fit over the mouth only.  Choose an infant mask that will cover the child’s mouth only.  Occlude the opposite nostril with your finger while you form a tight seal with the mask around the mouth. Deliver short, abrupt bursts of ventilation through the mouth – be sure to maintain good seals with the mask and with your finger to the child’s nostril – until the foreign body is expulsed through the affected nostril.

Beamsley Blaster (Continuous Positive Pressure) Technique

For the very uncooperative child with a nasal foreign body amenable to positive pressure ventilation who fails the mother’s kiss and bag-mask technique, a continuous positive pressure method may be used. Connect one end of suction tubing to the male adaptor (“Christmas tree”) of an air or oxygen source.  Connect the other end of the suction tubing to a male-to-male adaptor (commonly used for chest tube connections or connecting / extending suction tubes).  Insert the end of the device into the child’s unaffected nostril.  The air flow will deliver positive pressure ventilation continuously.

With this technique there is a theoretical risk of barotrauma to the lungs or tympanic membranes.  However, there is only one case reported in the literature of periorbital subcutaneous emphysema.

To minimize this risk, some authors recommend limiting to a maximum of four attempts using any positive pressure method.10

Nasal speculum

Optimize your visualization with a nasal speculum.  The nostrils, luckily, will accommodate a fair amount of distention without damage. 

Hold the speculum vertically to avoid pressure on and damage to the vessel-and-nerve-rich nasal septum.  Hold the handle of the speculum in the palm of your hand comfortably and while placing your index finger on the patient’s ala.  This will help to control the speculum and your angle of sight. Your other hand is then free to use a hook or other tool for extraction.

Lighting is especially important when using the nasal speculum: a focused procedure light or head lamp is very helpful.  The author keeps a common camping LED headlamp in his bag for easy access.

Suction tips / catheters

Various commercial and non-commercial suction devices are on the market for removal of foreign bodies.  All connect to wall suction, and vary by style, caliber of suction, and tip end interface.  A commonly available suction catheter is the Frazier suction tip (right), a single-use device used in the operating room.

A modification to suction can be made with the Schuknecht foreign body remover (left; not to be confused with the suction catheter of the same name): a plastic cone-shaped tip placed on the end of the suction catheter to increase vacuum surface area and seal.

 Laryngoscope and Magill Forceps

If a child aspirates and occludes his airway, return to BLS maneuvers (as above).  If the child becomes obtunded, use direct laryngoscopy to visualize the foreign body and remove with the Magill forceps.  Hold the laryngoscope in your left hand as per usual.  Hold the Magill forceps in your right hand – palm side down – to grasp and remove the foreign body.

 Take-home Points

 Beware the “vacuum palate”: a flat (especially clear plastic) foreign body hiding on the palate

Take seriously the complaint of foreign body without obvious evidence on initial inspection – believe that something is in there until proven otherwise

Control the environment, address analgesia and anxiolysis, have a back-up plan

Motto

Like a difficult airway: plan through the steps

MERCI – DANKE – Дякую – THANK YOU – GRACIAS –  ありがとう— GRAZIE

Appendix A: Prevention

At the end of the visit, after some rapport has been established, counsel the caregivers about age-appropriate foods and “child-proofing” the home.  This is a teachable moment – and only you can have this golden opportunity!

Age-appropriate foods

0-6 months: breastmilk or formula

6-9 months: introduce solid puree-consistency foods

9-12 months: small minced solids that require no chewing (well cooked, soft, chopped foods)

Although molars (required for chewing) erupt around 18 months, toddlers need to develop coordination, awareness to eat hard foods that require considerable chewing.

Not until 4 years of age (anything that requires chewing to swallow):

            Hot dogs

            Nuts and seeds

            Chunks of meat or cheese

            Whole grapes

            Hard or sticky candy

            Popcorn

            Chunks of peanut butter

            Chunks of raw vegetables

            Chewing gum

Child-proofing the home

Refer parents to the helpful multi-lingual site from the American Academy of Pediatrics:

http://www.healthychildren.org/English/safety-prevention/at-home/Pages/Childproofing-Your-Home.aspx

An abbreviated list: use age-appropriate toys and “test” them out before giving them to your child to verify that there are no small, missing, or loose parts.  Secure medications, lock up cabinets (especially with chemicals), do not store chemicals in food containers, secure the toilet bowl, and unplug appliances.

Parents should understand that “watching” their child alone cannot prevent foreign body aspiration: a recent review found that in 84.2% of cases, incidents resulting in an airway foreign body occurred in the presence of an adult.35

Best overall tip: get down on all fours and inspect your living area from the child’s perspective.  It is amazing what you will find when you are least expecting it.

Appendix B: The Playbook's ENT Foreign Body Toolkit

Although your institution should supply you with what you need to deal with routine problems, we all struggle with having just what we need when we need it.  High-volume disposable items such as cyanoacrylate (Dermabond), curettes, supplies for irrigation, alligator forceps, and the like certainly should be supplied by the institution.  However, some things come in very handy as our back-up tools.

NB: we should be cognizant of the fact that tools that must be sterilized or autoclaved are not good candidates for our personal re-usable toolkits.

These items can all be found inexpensively – shop around online, or in home improvement stores:

  • Head lamp, LED camping style: $5-15
  • Neodymium magnet “pick-up tool”: $5-15
  • Neodymium bar magnet: $6-20
  • Wire, 24-gauge, spool of 25 yards (for snare technique): $6
  • Day hook: $15-20

References

  1. Chapin MM, Rochette LM, Annest JL, Haileyesus T, Conner KA, Smith GA. Nonfatal Choking on Food Among Children 14 Years or Younger in the United States, 2001–2009. Pediatrics. 2013;132(2):275-281. doi:10.1542/peds.2013-0260.
  2. Committee on Injury V. Policy Statement—Prevention of Choking Among Children. Pediatrics. 2010:peds.2009-2862. doi:10.1542/peds.2009-2862.
  3. Brown L, Denmark TK, Wittlake WA, Vargas EJ, Watson T, Crabb JW. Procedural sedation use in the ED: management of pediatric ear and nose foreign bodies. Am J Emerg Med. 2004;22(4):310-314.
  4. Heim SW, Maughan KL. Foreign bodies in the ear, nose, and throat. Am Fam Physician. 2007;76(8):1185-1189.
  5. DiMuzio J, Deschler DG. Emergency department management of foreign bodies of the external ear canal in children. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol. 2002;23(4):473-475.
  6. Leffler S, Cheney P, Tandberg D. Chemical immobilization and killing of intra-aural roaches: an in vitro comparative study. Ann Emerg Med. 1993;22(12):1795-1798.
  7. Kiger JR, Brenkert TE, Losek JD. Nasal foreign body removal in children. Pediatr Emerg Care. 2008;24(11):785-792; quiz 790-792. doi:10.1097/PEC.0b013e31818c2cb9.
  8. Kadish HA, Corneli HM. Removal of nasal foreign bodies in the pediatric population. Am J Emerg Med. 1997;15(1):54-56.
  9. Tahir N, Ramsden WH, Stringer MD. Tracheobronchial anatomy and the distribution of inhaled foreign bodies in children. Eur J Pediatr. 2009;168(3):289-295. doi:10.1007/s00431-008-0751-9.
  10. Rempe B, Iskyan K, Aloi M. An Evidence-Based Review of Pediatric Retained Foreign Bodies. Pediatr Emerg Med Pract. 6(12).
  11. Digoy GP. Diagnosis and management of upper aerodigestive tract foreign bodies. Otolaryngol Clin North Am. 2008;41(3):485-496, vii - viii. doi:10.1016/j.otc.2008.01.013.
  12. Loren Yamamoto, Inaba A, DiMauro R. Radiologic Cases in Pediatric Emergency Medicine; University of Hawaii. Radiol Cases Emerg Med. http://www.hawaii.edu/medicine/pediatrics/pemxray/zindex.html. Accessed February 20, 2015.
  13. Painter K. Energizer makes button battery packages safer for kids. USA Today.
  14. ASGE Standards of Practice Committee, Ikenberry SO, Jue TL, et al. Management of ingested foreign bodies and food impactions. Gastrointest Endosc. 2011;73(6):1085-1091. doi:10.1016/j.gie.2010.11.010.
  15. Sharieff GQ, Brousseau TJ, Bradshaw JA, Shad JA. Acute esophageal coin ingestions: is immediate removal necessary? Pediatr Radiol. 2003;33(12):859-863. doi:10.1007/s00247-003-1032-4.
  16. Cohen S, Avital A, Godfrey S, Gross M, Kerem E, Springer C. Suspected Foreign Body Inhalation in Children: What Are the Indications for Bronchoscopy? J Pediatr. 2009;155(2):276-280. doi:10.1016/j.jpeds.2009.02.040.
  17. Haliloglu M, Ciftci AO, Oto A, et al. CT virtual bronchoscopy in the evaluation of children with suspected foreign body aspiration. Eur J Radiol. 2003;48(2):188-192. doi:10.1016/S0720-048X(02)00295-4.
  18. Jung SY, Pae SY, Chung SM, Kim HS. Three-dimensional CT with virtual bronchoscopy: a useful modality for bronchial foreign bodies in pediatric patients. Eur Arch Otorhinolaryngol. 2011;269(1):223-228. doi:10.1007/s00405-011-1567-1.
  19. Hussain SZ, Bousvaros A, Gilger M, et al. Management of ingested magnets in children. J Pediatr Gastroenterol Nutr. 2012;55(3):239-242. doi:10.1097/MPG.0b013e3182687be0.
  20. Brown JC, Otjen JP, Drugas GT. Too attractive: the growing problem of magnet ingestions in children. Pediatr Emerg Care. 2013;29(11):1170-1174. doi:10.1097/PEC.0b013e3182a9e7aa.
  21. Brown JC, Otjen JP, Drugas GT. Pediatric magnet ingestions: the dark side of the force. Am J Surg. 2014;207(5):754-759; discussion 759. doi:10.1016/j.amjsurg.2013.12.028.
  22. Menner AL. Pocket Guide to the Ear: A Concise Clinical Text on the Ear and Its Disorders. Thieme; 2011.
  23. Colina D, Dudek S, Lin M. Tricks of the Trade: ENT Dilemmas - How Do I Get That Out of There? ACEP News. http://www.acep.org/Clinical---Practice-Management/Tricks-of-the-Trade--ENT-Dilemmas---How-Do-I-Get-That-Out-of-There-/?__taxonomyid=118010. Published July 2009. Accessed February 5, 2015.
  24. Abadir WF, Nakhla V, Chong P. Removal of superglue from the external ear using acetone: case report and literature review. J Laryngol Otol. 1995;109(12):1219-1221.
  25. Kadish H. Ear and Nose Foreign Bodies “It is all about the tools.” Clin Pediatr (Phila). 2005;44(8):665-670. doi:10.1177/000992280504400803.
  26. Chisholm EJ, Barber-Craig H, Farrell R. Chewing gum removal from the ear using acetone. J Laryngol Otol. 2003;117(4):325. doi:10.1258/00222150360600995.
  27. White SJ, Broner S. The use of acetone to dissolve a Styrofoam impaction of the ear. Ann Emerg Med. 1994;23(3):580-582.
  28. Singer AJ, Sauris E, Viccellio AW. Ceruminolytic effects of docusate sodium: a randomized, controlled trial. Ann Emerg Med. 2000;36(3):228-232. doi:10.1067/mem.2000.109166.
  29. Bledsoe RD. Magnetically adherent nasal foreign bodies: a novel method of removal and case series. Am J Emerg Med. 2008;26(7):839.e1-e839.e2. doi:10.1016/j.ajem.2008.01.036.
  30. Dolderer JH, Kelly JL, Morrison WA, Penington AJ. FOREIGN-BODY RETRIEVAL USING A RARE EARTH MAGNET: Plast Reconstr Surg. 2004;113(6):1869-1870. doi:10.1097/01.PRS.0000119869.01081.1C.
  31. Yeh B, Roberson JR. Nasal magnetic foreign body: a sticky topic. J Emerg Med. 2012;43(2):319-321. doi:10.1016/j.jemermed.2010.02.013.
  32. Fundakowski CE, Moon S, Torres L. The snare technique: a novel atraumatic method for the removal of difficult nasal foreign bodies. J Emerg Med. 2013;44(1):104-106. doi:10.1016/j.jemermed.2012.07.070.
  33. Chan TC, Ufberg J, Harrigan RA, Vilke GM. Nasal foreign body removal. J Emerg Med. 2004;26(4):441-445. doi:10.1016/j.jemermed.2003.12.024.
  34. Cook S, Burton M, Glasziou P. Efficacy and safety of the “mother’s kiss” technique: a systematic review of case reports and case series. Can Med Assoc J. 2012;184(17):E904-E912. doi:10.1503/cmaj.111864.
  35. Gregori D, Morra B, Snidero S, et al. Foreign bodies in the upper airways: the experience of two Italian hospitals. J Prev Med Hyg. 2007;48(1):24-26.

This post and podcast are dedicated to Linda Dykes, MBBS(Hons) for her can-do attitude and collaborative spirit.  Thank you for sharing your knowledge, experience, and heart with the world.

Mar 1, 2017

When you give only after you're asked, you've waited too long.

– John Mason

First, learn to bag

Place a towel roll under the scapulae to align oral, pharyngeal, and tracheal axes:

Karsli C. Can J Anesth. 2015.

Use airway adjuncts such as the oropharyngeal airway or a nasal trumpet.

Use the two-hand ventilation technique whenever possible:

 

(See Adventures in RSI for more)

 

 

Supraglottic Airways:

for difficult bag-valve-mask ventilation or a difficult airway

(details in audio)

LMA Classic

Pros: Best studied; sizes for all ages

Cons: Cannot intubate through aperture

 

LMA Supreme

Pros: Better ergonomics with updated design; bite bloc; port for decompression

Cons: Cannot pass appropriate-sized ETT through tube

 

King Laryngeal Tube

Pros: Little training needed; high success rate; single inflation port

Cons: Flexion of tube can impede ventilation or cause leaks; only sized down to 12 kg (not for infants and most toddlers)

 

Air-Q

Pros: Easy to place; can intubate through aperture

Cons: Not for neonates less than 4 kg

 

iGel

Pros: Molds more accurately to supraglottis; no need to inflate; good seal pressures

Cons: Cannot intubate through (without fiberoscopy)

 

Summary

• If you can bag the patient, you're winning.

• If you have difficulty bagging, or anticipate or encounter a difficult airway, then don't forget your friend the supraglottic airway (SGA).

• Ego is the enemy of safety: SGAs are simple, fast, and reliable.

• Just do it.

 

References

Ahn EJ et al. Comparative Efficacy of the Air-Q Intubating Laryngeal Airway during General Anesthesia in Pediatric Patients: A Systematic Review and Meta-Analysis. Biomed Res Int. 2016;2016:6406391.

Black AE, Flynn PE, Smith HL, Thomas ML, Wilkinson KA; Association of Pediatric Anaesthetists of Great Britain and Ireland. Development of a guideline for the management of the unanticipated difficult airway in pediatric practice. Paediatr Anaesth. 2015 Apr;25(4):346-62.

Byars DV et al. Comparison of direct laryngoscopy to Pediatric King LT-D in simulated airways. Pediatr Emerg Care. 2012 Aug;28(8):750-2. 

Carlson JN, Mayrose J, Wang HE. How much force is required to dislodge an alternate airway? Prehosp Emerg Care. 2010 Jan-Mar;14(1):31-5.

Diggs LA, Yusuf JE, De Leo G. An update on out-of-hospital airway management practices in the United States. Resuscitation. 2014 Jul;85(7):885-92.

Ehrlich PF et al. Endotracheal intubations in rural pediatric trauma patients. J Pediatr Surg. 2004 Sep;39(9):1376-80.

Hernandez MR, Klock PA Jr, Ovassapian A. Evolution of the extraglottic airway: a review of its history, applications, and practical tips for success. Anesth Analg. 2012 Feb;114(2):349-68. 

Huang AS, Hajduk J, Jagannathan N. Advances in supraglottic airway devices for the management of difficult airways in children. Expert Rev Med Devices. 2016;13(2):157-69.

Jagannathan N, Wong DT. Successful tracheal intubation through an intubating laryngeal airway in pediatric patients with airway hemorrhage. J Emerg Med. 2011 Oct;41(4):369-73. 

Jagannathan N et al. Elective use of supraglottic airway devices for primary airway management in children with difficult airways. Br J Anaesth. 2014 Apr;112(4):742-8.

Jagannathan N, Ramsey MA, White MC, Sohn L. An update on newer pediatric supraglottic airways with recommendations for clinical use. Paediatr Anaesth. 2015 Apr;25(4):334-45.

Karsli C. Managing the challenging pediatric airway: Continuing Professional Development. Can J Anaesth. 2015 Sep;62(9):1000-16.

Luce V et al. Supraglottic Airway Devices vs Tracheal Intubation in Children: A Quantitative Meta-Analysis of Respiratory Complications. Paediatr Anaesth 24 (10), 1088-1098.

Nicholson A et al. Supraglottic airway devices versus tracheal intubation for airway management during general anaesthesia in obese patients. Cochrane Database Syst Rev. 2013 Sep 9;(9):CD010105.

Ostermayer DG, Gausche-Hill M. Supraglottic airways: the history and current state of prehospital airway adjuncts. Prehosp Emerg Care. 2014 Jan-Mar;18(1):106-15. 

Rosenberg MB, Phero JC, Becker DE. Essentials of airway management, oxygenation, and ventilation: part 2: advanced airway devices: supraglottic airways. Anesth Prog. 2014 Fall;61(3):113-8. 

Schmölzer GM, Agarwal M, Kamlin CO, Davis PG. Supraglottic airway devices during neonatal resuscitation: an historical perspective, systematic review and meta-analysis of available clinical trials. Resuscitation. 2013 Jun;84(6):722-30.

Sinha R, Chandralekha, Ray BR. Evaluation of air-Q™ intubating laryngeal airway as a conduit for tracheal intubation in infants--a pilot study. Paediatr Anaesth. 2012 Feb;22(2):156-60.

Timmermann A. Supraglottic airways in difficult airway management: successes, failures, use and misuse. Anaesthesia. 2011 Dec;66 Suppl 2:45-56.

Timmermann A, Bergner UA, Russo SG. Laryngeal mask airway indications: new frontiers for second-generation supraglottic airways. Curr Opin Anaesthesiol. 2015 Dec;28(6):717-26.

 

150px-WikEM_app_Logo

Supraglottic Airway on WikEM

 

This post and podcast are dedicated to Tim Leeuwenburg, MBBS FRACGP FACRRM DRANZCOG DipANAES and Rich Levitan, MD, FACEP for keeping our minds and our patients' airways -- open.  You make us better doctors.  Thank you.

Powered by #FOAMed — Tim Horeczko, MD, MSCR, FACEP, FAAP

Pediatric; Emergency Medicine; Pediatric Emergency Medicine; Podcast; Pediatric Podcast; Emergency Medicine Podcast; Horeczko; Harbor-UCLA; Presentation Skills; #FOAMed #FOAMped #MedEd

Feb 1, 2017

When should you commit to getting urine?

When can you wait?

When should you forgo testing altogether?

When do I get urine?

Symptoms – either typical dysuria, urgency, frequency in a verbal child, or non-descript abdominal pain or vomiting in a well appearing child.

Fever – but first look for an obvious alternative source, especially viral signs or symptoms.

No obvious source?

Risk stratify before “just getting a urine”.

In a low risk child, with obviously very vigilant parents, who is well appearing, you may choose not to test now, and ensure close follow up.

Bag or cath?

The short answer is: always cath, never bag.

(Pros and cons in audio)

What is the definition of a UTI?

According to the current clinical practice guideline by the AAP, the standard definition of a urinary tract infection is the presence of BOTH pyuria AND at least 50 000 colonies per mL of a single uropathogen.

Making the diagnosis in the ED:

The presence of WBCs with a threshold of 5 or greater WBCs per HPF is required.

What else goes into the urinalysis that may be helpful?

Pearl: nitrites are poorly sensitive in children.  It takes 4 hours for nitrites to form, and most children this age do no hold their urine.

Pearl: the enhanced urinalysis is the addition of a gram stain.  A positive gram stain has a LR+ of 87 in infants less than 60 days, according to a study by Dayan et al. in Pediatric Emergency Care.

When can I just call it pyelonephritis?

In an adult, we look for UTI plus evidence of focal upper tract involvement, like CVA tenderness to percussion or systemic signs like nausea, vomiting, or fever.  It is usually straightforward.

It’s for this reason that the literature uses the term “febrile UTI” for children.  Fever is very sensitive, but not specific in children.

The ill-appearing child has pyelonephritis.   The well-appearing child likely has a “febrile UTI”, without upper involvement.  However, undetected upper tract involvement may be made in retrospect via imaging, if done.

How should I treat UTIs?

For simple lower tract disease, treat for at least 7 days.  There is no evidence to support 7 versus 10 versus 14 days.  My advice: use 7-10 days as your range for simple febrile UTI in children.

Pyelonephritis should be treated for a longer duration.  Treat pyelonephritis for 10-14 days.

What should we give them?

Sulfamethoxazole and trimethoprim (Bactrim) is falling out of favor, mostly because isolates in many communities are resistant.  There is an association of Stevens-Johnson Syndrome (SJS) with Bactrim use.  This may be confounded by its prior popularity; any antibiotic can cause SJS, but there are more case reports with Bactrim.

Cephalexin (Keflex): 25 mg/kg dose, either BID or TID.  It is easy on the stomach, rarely interacts with other meds, has high efficacy against E. coli, and most importantly, cephalexin has good parenchymal penetration.

Nitrofurantoin is often used in pregnant women, because the drug tends to concentrate locally in the urine.  However, blood and tissue concentrations are weak.  It may be ineffective if there is some sub-clinical upper tract involvement.

Cefdinir is a 3rd generation cephalosporin available by mouth, given at 14 mg/kg in either one dose daily or divided BID, up to max of 600 mg.  This may be an option for an older child who has pyelonephritis, but is well enough to go home.

Whom should we admit?

The first thing to consider is ageAny infant younger than 2 months should be admitted for a febrile UTI.  Their immune systems and physiologic reserve are just not sufficient to localize and fight off infections reliably.

The truth is, for serious bacterial illness like pneumonia, UTI, or severe soft tissue infections, be careful with any infant less than 4-6 months of age.

Of course, the unwell child – whatever his age – he should be admitted.  Think about poor feeding, irritability, dehydration – in that case, just go with your gut and call it pyelonephritis, and admit.

What is the age cut-off for a urine culture?

In adults, we think of urine culture only for high-risk populations, such as pregnant women, the immunocompromised, those with renal abnormalities, the neurologically impaired, or the critically ill, to name a few.

In children, it’s a little simpler.  Do it for everyone.

Who is everyone? Think of the urine rule of 10s:

10% of young febrile children will have a UTI

10% of UAs will show no evidence of pyuria

Routine urine culture in all children with suspected or confirmed UTI up to about age 10

What do I do then with urine culture results?

From a quality improvement and safety perspective, consider making this a regular assignment to a qualified clinician.

Check once in 24-48 hours to find possible growth of a single uropathogen with at least 50 000 CFU/mL.  Look at the record to see that the child is one some antibiotic, or the reason why he may not.  Call the family if needed.

A second check at 48-72 hours may be needed to verify speciation and sensitivities.

The culture check, although tedious, is important to catch those small children who did not present with pyuria and who may need antibiotics, or to verify that the right agent is given.

Ok, so your UA is negative…now what?

The culture is cooking, but you are not convinced.  Below is the differential diagnosis for common causes of pyuria in children:

 

What kind of follow-up should the child get?

The younger the child, the more we worry about missing a decompensation.  Encourage the parents to call the child's primary care clinician for a re-check in a few days, and to discuss whether or not further work-up such as imaging is indicated.  As always, strict return to ED precautions are helpful.

Who needs imaging?

A more accurate question is: what is an important anomaly to detect?

Vesiculo-ureteral reflux – a loose ureteropelvic junction causes upstream reflux when the bladder constricts.

Uretero-pelvic junction obstruction – in older children or young adults with hematuria, UTI, abdominal mass, or pain.  Infants born with UPJ obstruction have congenital hydronephrosis.

Ureterocoele – a cystic mass in the bladder.  It is not malignant, but can cause ureteral dilation, and hydronephrosis.  Treatment is surgical.

Ectopic ureter – either a duplication of the draining system, or an abnormal connection, such as the epidydimis or cervix.

Posterior urethral valves – occur only in boys, and they are a bit of a misnomer.  The most common type of congenital bladder outlet obstruction, posterior urethral valves are just extra folds of membrane in the lumen of the prostatic urethra.  Usually ablation by cystoscopy does the trick.

Urachal remnant – a leftover from fetal development, and an abnormal connection between the bladder and the umbilicus.  Look for an “always wet” belly button in an infant, or an umbilical mass with pain and fever in an older child.

Imaging of choice as an outpatient?

Renal and bladder ultrasound (RBUS) after the first UTI is recommended (although incompletely followed in practice).

If the RBUS is positive, or with the second UTI, DMSA scan to evaluate possible renal scarring.

So, with all of this testing – are we over doing it?

Like anything, it’s a balance.  A few tips to avoid iatrogenia by way of a summary.

If a child over 3 months of age is well, has no comorbidities, has a low grade fever "in the 38s" (38-38.9 °C) without a source, especially if less than 24 hours, you are very safe to do watchful waiting at home.

More to the point, an otherwise well child with an obvious upper respiratory tract infection has a source of his fever.

If your little patient has risk factors for UTI, or you are otherwise concerned, send the UA and send the culture.  You can opt out of the culture by middle school in the otherwise healthy child.

And finally, deputize parents to carry the ball from here – the child needs ongoing primary care and his pediatrician may elect to do some screening.  Don’t promise or prime them for it – rather, encourage the conversation.

BONUS:

Suprapubic aspiration (details in podcast audio; video below)

BONUS BONUS:

Infant Clean Catch Technique

Step One: feed the baby, wait twenty minutes.

 

 

Step Two: clean the genitals with soap and warm water and dry with gauze.  Have your sterile urine container open and at the ready.

 

 

Step Three: one person holds the baby under his armpits with his legs dangling.  The other person gently taps the bladder (100 taps/min), then massages the lower back for 30 seconds.

 

 

Step Four: Clean Catch! (can also repeat process)

 

References

Bonsu BK, Shuler L, Sawicki L, Dorst P, Cohen DM. Susceptibility of recent bacterial isolates to cefdinir and selected antibiotics among children with urinary tract infections. Acad Emerg Med. 2006 Jan;13(1):76-81.

Coulthard MG, Lambert HJ, Vernon SJ, Hunter EW, Keir MJ, Matthews JN. Does prompt treatment of urinary tract infection in preschool children prevent renal scarring: mixed retrospective and prospective audits. Arch Dis Child. 2014 Apr;99(4):342-7.

Dayan PS et al.  Test characteristics of the urine Gram stain in infants <or= 60 days of age with fever. Pediatr Emerg Care. 2002 Feb;18(1):12-4.

Downs SM. UTI and watchful waiting: the courage to do nothing. Pediatrics. 2014 Mar;133(3):535-6.

Fidan K, Kandur Y, Buyukkaragoz B, Akdemir UO, Soylemezoglu O. Hypertension in pediatric patients with renal scarring in association with vesicoureteral reflux. Urology. 2013 Jan;81(1):173-7.

Finnell SM, Carroll AE, Downs SM; Subcommittee on Urinary Tract Infection. Technical report—Diagnosis and management of an initial UTI in febrile infants and young children. Pediatrics. 2011 Sep;128(3):e749-70. 

Keren R et al. Risk Factors for Recurrent Urinary Tract Infection and Renal Scarring. Pediatrics. 2015 Jul;136(1):e13-21.

Lockhart GR, Lewander WJ, Cimini DM, Josephson SL, Linakis JG. Use of urinary gram stain for detection of urinary tract infection in infants. Ann Emerg Med. 1995 Jan;25(1):31-5.

Michael M, Hodson EM, Craig JC, Martin S, Moyer VA. Short versus standard duration oral antibiotic therapy for acute urinary tract infection in children. Cochrane Database Syst Rev. 2003;(1):CD003966.

Nelson CP, Johnson EK, Logvinenko T, Chow JS. Ultrasound as a screening test for genitourinary anomalies in children with UTI. Pediatrics. 2014 Mar;133(3):e394-403.

Paschke AA, Zaoutis T, Conway PH, Xie D, Keren R. Previous antimicrobial exposure is associated with drug-resistant urinary tract infections in children. Pediatrics. 2010 Apr;125(4):664-72.

Shaikh N et al. Identification of children and adolescents at risk for renal scarring after a first urinary tract infection: a meta-analysis with individual patient data. JAMA Pediatr. 2014 Oct;168(10):893-900.

Shah AP et al.  Enhanced versus automated urinalysis for screening of urinary tract infections in children in the emergency department. Pediatr Infect Dis J. 2014 Mar;33(3):272-5. 

Shaw KN, Gorelick M, McGowan KL, Yakscoe NM, Schwartz JS. Prevalence of urinary tract infection in febrile young children in the emergency department. Pediatrics. 1998 Aug;102(2):e16.

Shah AP, Cobb BT, Lower DR, Shaikh N, Rasmussen J, Hoberman A, Wald ER, Rosendorff A, Hickey RW. Enhanced versus automated urinalysis for screening of urinary tract infections in children in the emergency department. Pediatr Infect Dis J. 2014 Mar;33(3):272-5.

Shaikh N, Morone NE, Lopez J, Chianese J, Sangvai S, D'Amico F, Hoberman A, Wald ER. Does this child have a urinary tract infection? JAMA. 2007 Dec 26;298(24):2895-904.

Shaikh N et al. Early Antibiotic Treatment for Pediatric Febrile Urinary Tract Infection and Renal Scarring. JAMA Pediatr. 2016 Sep 1;170(9):848-54. 

Subcommittee on Urinary Tract Infection, Steering Committee on Quality Improvement and Management, Roberts KB. Urinary tract infection: clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics. 2011 Sep;128(3):595-610.

This post and podcast are dedicated to Brad Sobolewski, MD, MEd for his innovation and tenacity in all things #FOAMed, #FOAMped, and #MedEd.  Thanks, Brad, for your enthusiasm, energy, and for your fantastic PEM Currents and  PEM Blog.



150px-WikEM_app_Logo

Pediatric Urinary Tract Infections

Powered by #FOAMed -- Tim Horeczko, MD, MSCR, FACEP, FAAP

1 2 Next »